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LElTER TO THE EDITOR 

Critical fluctuations around non-equilibrium steady states 
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t The Blackett Laboratory, Imperial College, London SW7 282, L'K 
t Center for Space Research, Massachusetts Institute of Technology, Cambridge, 
Massachusetts 02139. USA 

Received 19 March 1984 

Abstract. Scaling and renormalisation-group concepts are used to derive phenomenological 
Langevin equations for non-equilibrium steady states. For the Schlogl model we unam- 
biguously identify the critical Langevin equation in 4 -  E dimensions simply by requiring 
that the correct mean-field limit be reproduced. Our approach should therefore be applicable 
to models for which only the mean-field behaviour is well established. 

Non-equilibrium phase transitions (Haken 1975) have attracted a great deal of attention 
in recent years. Particularly for chemical systems, although there is broad agreement 
on the nature of the instabilities, a conventional treatment of the critical fluctuations 
is hampered by the absence of a simple phenomenological Langevin equation. In this 
letter we study the Schlogl (1972) model which is perhaps the simplest prototype for 
a non-equilibrium continuous phase transition. Using scaling and renormalisation- 
group ideas we find that we may unambiguously identify the Langevin equation 
which controls the critical fluctuations, by simply demanding that it reproduce the 
correct mean-field behaviour which is known from a number of sources (Nitzan et a1 
1974, Gardiner et a1 1976, Mou er a1 1978). For this model our approach leads in a 
simple manner to the rather curious multiplicative noise suggested by Gardiner and 
Chaturvedi (1977) on the basis of a sophisticated treatment of the associated master 
equation. Analysing the scaling structure we find that the Schlogl model lies neither 
in the universality class of Reggeon theory as suggested by Grassberger and Sunder- 
meyer (1978) nor that described by Goldhirsch and Procaccia (1981). Adopting our 
Langevin description a conventional dynamical renormalisation-group treatment (de 
Dominicis and Peliti 1978, Vvedensky er a1 1983) may be employed, which unlike that 
of Goldhirsch and Procaccia is free of any ad hoc assumptions. 

The Schlogl (1972) model for a chemical instability is defined by the coupled 
reactions 

where it is arranged for the concentrations of A, B, C to be held fixed (an open system) 
whilst the concentration of X, denoted by [XI = $(r,  r ) ,  is monitored. Phenomenologi- 
cally we propose for the system a Langevin equation of the form 
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with a gaussian noise v ( r ,  t ) :  

( v ( c  t ) )  = 0, ( v ( r ,  r ) v ( r ’ ,  t ’ ) ) =  a ( r - t ’ p ( r - r ’ ) .  (3) 

As one would expect the first term controls diffusion whilst the second represents the 
deterministic rate equation for the reaction ( I ) ;  h = k,[C],  r = k , [ A ]  - k , [ B ] ,  U = 2k2. 
The novelty of our scheme lies in the function g($(r ,  t ) )  controlling the noise term 
which is to be specified below. Naturally for an  equilibrium system g ( $ )  is specified 
directly by the fluctuation dissipation theorem associated with local stability of an  
equilibrium configuration, however for this non-equilibrium (open) system a new 
criterion must be sought. Seeking homogeneous steady-state solutions of ( 2 ) ,  (3) the 
continuous phase transition is easily identified. We find for h = O  

so that at r = 0 the system undergoes a continuous phase transition, closely resembling 
those seen in equilibrium systems with a divergent correlation length ( - r - ” 2 .  

For d > 4  spatial dimensions it is well known (Mori and McNeil 1977) that the 
mean-field (or gaussian) approach to the Schlogl model is adequate even near the 
phase transition. One finds for example from the Master equation (Gardiner et a1 
1976) or Fokker-Planck (Nitzan et a1 1974) techniques that the equal-time correlation 
function C(q, t )  taken at  momentum q is in the steady state for h = 0 of the form 

C(q, t)-($)l(Dq2 +$U(*)). ( 5 )  

It is interesting to observe that as the critical point is approached from the ordered 
phase the zero momentum equal-time correlation function remains finite despite the 
divergence of the correlation length ( ( h  = 0), in sharp contrast to a more conventional 
phase transition. 

On the other hand suppressing the fluctuation corrections (2) is easily solved by 
writing 

CL = (CL) +a* (6) 

r ( + )  - tu(+) ’  = 0. (7) 

C(q, t ) - ( g ( ( $ ) ) ) 2 1 ( w  +$U(*)) (8) 

where to leading order (I)) satisfies for h = 0 the deterministic equation 

The effective Langevin equation for 64 then leads directly to the expression 

for the equal-time correlation function and  whence by direct comparison of (5), (8) to 
the identification of the function g ( x )  

g ( x )  - (9) 

at least at the mean-field level. We must now consider the possibility of fluctuation 
corrections to (9). 

A useful framework within which to discuss the scaling and  renormalisation-group 
structure associated with the Langevin equation ( 2 )  is the path integral formulation of 
classical statistical dynamics (de Dominicis and Peliti 1978). For the Langevin equation 
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(2), the generating function takes the form 

where L($, 4) is given by 

L(+, $1 = i j ( r ,  t)[a+(r, t ) / a t  - D V ’ + ( ~ ,  t )  - h - r+(r, t )  +;u+’(r, t ) ]  

+&h t )g(+(r ,  t))l’+f[r + ulL(r, 91. (1 1) 

Here the first term arises directly from the deterministic equations of motion, the 
second from the noise and finally the third from the normalising Jacobian (Bausch et 
a1 1976). As usual the correlation and response functions follow directly from Z(m, rfi) 
via 

(+(r ,  r ) )  = az(in, rfi)/am(r,  t)l,=h=o (12) 

(13) 

and their natural generalisations. 
To determine the relevance near the critical point of the non-linear terms appearing 

in (1 1) it is helpful to analyse the naive dimensions (Brezin et a1 1973). In terms of a 
microscopic length 1 we may scale frequencies U ,  momenta k and fields +, 6 as 

($(r,  t)+(r’,  t ’ ) )  = (a/ah(r,  t ) ) (+(r ’ ,  t ’ ) )  = a 2 2 ( m ,  rfi)/arfi(r, t)am(r’, t r ) lm=A=O 

(14) r -  w - k 2 -  1-2 ,  * - $ z / - d / 2  

so that we immediately conclude that the important non-linear coupling U scales as 

(15) 

and thus modifies the critical behaviour only for d < 4 spatial dimensions as expected. 
Additionally we observe from (9), (1 1) that it is natural to form a polynomial approxima- 
tion for the squared function g2(x): 

(16) 

U - I‘d - 4 V 2  

g’(x) = ux + wx* + * . * 

where the parameters U, w scale as 

- l (d -4 ) /2  w - p - 2  
9 

and thus we deduce directly that the choice (9) will suffice to describe the phase 
transition for d > 2. Rescaling 6 we therefore arrive finally at the effective Lagrangian 
density 

L(+, j )  = i&r, t ) [ a / a t  - DV’ - r]+(r,  t )  +ij(r, t ) h  

+tu[i&r, t)+’(r, t )  +G2(r, t)+(r,  t ) ] + i [ r  +u+(r, t ) ] .  (17) 

Our model is not equivalent to that proposed by Grassberger and Sundermeyer 
(1978). The Reggeon model (Abarbanel and Bronzan 1974) described by these authors 
is defined by the action 

~ ( 4 ,  4*)  = i4*(r, t ) [ a / a r  - DV’ - r]rb(r, t )  +fiu[rb*(r, r)$2(r, t )  +(+*)’(r,  t ) 4 ( r ,  r ) ]  

(18) 
where 4 ( r ,  t )  is a complex valued field. Taking 4 = 4 + i &  it seems clear that to identify 
(17), (18) we must append two new vertices: z i 3 ,  ~ 4 ~ .  For our Langevin approach 
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h o w y e r  the +b3 vertex would violate causality (see de  Dominicis and  Peliti 1978) whilst 
the rL3 vertex would correspond to the introduction of a non-trivial third-order noise 
term (( q 3 )  # 0). Consequently the models ( l 7 ) ,  (1  8) are rather different. Indeed since 
these extra vertices are not dynamically generated by the renormalisation group they 
belong to different universality classes. 

On the other hand Goldhirsch and  Procaccia (1981) use a truncated form of (17) 
which includes no $*$ vertex. For such a model a conventional renormalisation-group 
treatment does not possess a non-trivial infrared stable fixed point so these authors 
were forced to propose a rather ad hoc scheme. 

We have performed a complete renormalisation-group analysis of our model (1  7 )  
(details to be reported elsewhere) which locates a non-trivial fixed point. The dynamical 
z and correlation length U exponents are to leading order 

= +I, z = 2 +&E,  2 16 

which are indeed different from those of the Reggeon model at first order in E = 4 - d 
(Cardy and Sugar 1980). At an  even more fundamental level it is clear that (17), (18) 
possesses entirely different ordlered phases. For our model causality ensures (4) = 0 
whilst in the Reggeon model (+b) - ($). 

To conclude we have proposed a simple method of deriving a non-equilibrium 
Langevin equation on the basis of the mean-field structure, which as in the Schlogl 
model is often known from a number of different sources (Master equation, Fokker- 
Planck, . . .). For the Schlogl model a sophisticated analysis of the Master equation 
due to Gardiner and  Chaturvedi (1977) leads basically to the same Langevin equation 
(including the curious multiplicative noise g(x) - XI’’), however in most cases we are 
not so fortunate. We are currently studying the implications of our approach for the 
chemical Brusselator, the Binard instability and the laser (Haken 1975). 

We thank Professor D Sherrington for valuable discussions. The support of the Air 
Force Geophysics Laboratory, the SERC, and  the British Petroleum Venture Research 
Unit is gratefully acknowledged. 
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